

Technology Development and Validation of Industrial Fuel Cell Vehicles

Phases II/III

(Project Status and Plans)

Presented to
U. S. DOE Hydrogen Program
1999 Annual Review Meeting
May 5, 1999

James M. Morrison
Southeastern Technology Center

Industrial Fuel Cell Vehicle(IFCV) Phase II/III Project

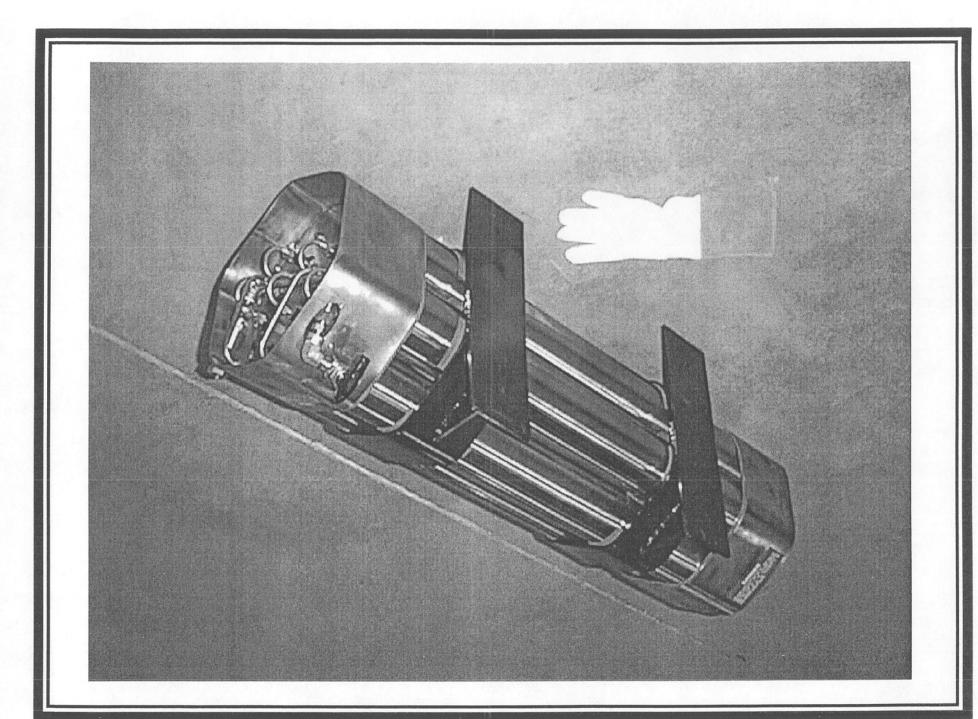
Objectives:

- Develop/validate small electric vehicles using PEM fuel cell power systems and onboard MH H₂ storage.
- Develop/validate compatible H₂ generator.
- Potential applications: airports, warehouses, maintenance, landscaping, other off-road uses.
- \$1.07 million total, 50.5% cost-shared

.Summary of Rationale and Approach

- Phase I Feasibility Study in FY 1998
 - -Preliminary market analysis
 - -Benefits of small IFCVs with onboard MH storage
 - Efficiency Range Environmental
 - -Significant niche market for off-road applications
- •Business Plan outlined pathway to commercialization
 - -Technology development and validation
 - -Marketing, financial, teaming plans
 - -Target costs and prices
 - -Potentially 3 years to FPU

Summary of Rationale and Approach (Cont.)


- Phase II/III Project Approach
 - -Overlap tech development and validation, save time, money
 - -Upgrade PEM fuel cells (FCs) in 2 existing Gators
 - -Replace pressurized tanks with MH storage beds (tech xfer)
 - -Evaluate electrolyzer for compatible refueling
 - -Stagger assembly and test schedules to incorporate adv. technology
 - -Evaluate performance, reliability, costs of commercial designs
 - -Multi-disciplined, skilled, committed team

Past Results

- •Two FC Gators tested 17 months Palm Springs Airport
 - -Different configuration
 - -Good performance, utility, refueling
 - -Suggested refinements incl. reliability, power drain
- •MH storage system evaluated onboard transit bus
 - -Larger configuration (15 kg H₂)
 - -Good performance, refueling
 - -Suggested refinements incl. Improved material, lower cost
- Phase I Feasibility Study
 - -Compared two FC concepts PEM, Alkaline
 - -Phases II and III proposed, selected

Current Year Results

- •Established detailed tech/cost/schedule plans
- Developed T-H performance model (USC)
 - -Generated flowsheet data for range of expected power, pressure
 - -Benchmark vehicle performance data
- •MH selected, beds fabricated for Gator 1 (WSRC)
 - -Evaluating materials, designs for Gator 2
- •Completed compressor evaluation (Deere)
 - -Reduced Gator 1 pressure, 20 to 10 psig
 - -Gator 2 compressor types/pressure under study
- •Established FC design specs for Gator 1 (EP)
 - -Support system requirements nearly complete
 - -Stack assembly behind schedule

FC and Power System Design Specs

FC Stack Output Avg. 8.5 KW Peak 10 KW

•No. of cells 60

•Gravimetric power density 204 w/kg

292 cm²/cell Active Area

Stack voltage 36 - 60 vdc

Dimensions 7" x 12" x 16.5"

Temp. in, 60°C Temp. out, 65°C Cooling water

Flow, 3.5 gpm

•H2 and air pressures 10 psig

 Batteries 3 12-volt 2 2-volt

(In series)

Key MH Storage Design Specs

•Material:

La-Ni-Al mischmetal

•Capacity:

4.2 lbs H₂ (delivered)

•Bed size:

3.5 inch dia. X 30-in. SS tube

•Bundles:

2 bundles, 7 tubes each

•Pressure:

Design 500 psig Operating 100 psig

Current Year Results (Cont'd.)

- •Gator 1 chassis reinforced, ready for MH (EP, Deere)
- •HM50 electrolyzer designed, assembled, shipped, installed at USC (TBEES)
 - -Supports up to 3 vehicles
- •Instrumentation and data requirements developed (USC, YT)
 - -Most fittings and sensors installed Gator 1
 - -USC test plan complete, YT in prep.
- Costs within budget
- Project on schedule except FC assembly

Plans for Future Work

•FY 1999

- -Complete assembly Gators 1 (5/31) and 2 (9/24)
- -Complete refueling and Gator 1 performance tests at USC
- -Begin Gator 1 field tests at YT
- -Begin design/economic evaluation of commercial vehicles

•FY 2000

- -Complete refueling test Gator 2
- -Complete field tests Gators 1 and 2 (3/30/00)
- -Retest Gator 1 component performance
- -IFCV market evaluation
- -Complete evaluations, decide readiness Phase IV

Key Milestones Toward Commercialization

Complete assembly first prototype IFCV	May 1999
Baseline designs FC, MH storage, electrolyzer	Mar. 2000
Decision on commercialization	June 2000
Construct FC production facility	June 2001
IFCV FPU	Dec. 2001
Production rate 1,000 IFCVs/yr.	May 2002
Production rate 10,000 IFCVs/yr.	May 2003
Positive cash flow	May 2004

Status of Economic Evaluation

- •Economic targets established in Phase I
 - -Basis prelim. market analysis and expectations for FC, MH success
 - -Cost and price \$ 5,000/\$6,000
 - -\$ 1,500 total for FC and MH systems
 - -Potential niche market 10,000 IFCVs/yr.
- •Reassess economics in Phase II/III
 - -Extend/validate market evaluation
 - -Update IFCV performance, reliability, and cost based on test results
 - -On schedule to complete March 2000

Major Barriers and Safety Issues

•Cost is the major challenge

FC: Improve performance (specific power, current

density, lower pressure and power drain)

Reduce costs (components, assembly, volume mfg.)

MH: Increase H2 capacity at modest temp./press.

Reduce material costs

Reduce bed fabrication cost

- •Demonstrate cost effective refueling
- Address liability and safety concerns
 - -Manageable based on experience to date
 - -Extend for commercial IFCV designs

Status: Technology Transfer and Partners

- •Metal Hydride system for H₂ storage
 - -Originally developed for defense programs
 - -Design patented by WSRC
 - -Demonstrated onboard public transit bus
- Other proprietary information
 - -Project team members
 - -FC, vehicles, electrolyzer
 - -Procedures in place to protect, utilize proprietary info

Technology Transfer and Partners (Cont'd)

Phase II/III IFCV Team

Energy Partners, Inc.

Deere & Company

Westinghouse Savannah River Co.

Teledyne Brown Engineering

Univ. of SC/CEE

PEM Fuel Cells

IFCV assembly & sales

MH storage system

H2 generators

Performance modeling, H₂

storage/refueling testing

York Technical College

Tech. Validation IFCV

Southeastern Technology Center

Project mgmt. & integration